The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor κB inhibition, in a PI3K-independent mechanism.

نویسندگان

  • Dorit Avni
  • Yifat Glucksam
  • Tsaffrir Zor
چکیده

The Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 (LY2), has been previously reported to inhibit nuclear factor κB (NFκB) activity, in a PI3K-independent mechanism. The goals of the current research were to determine the specificity of LY2 regarding NFκB subunits, and to identify relevant modulation of cytokine expression in LPS-stimulated macrophages. We found that LY2 specifically diminished the level of p50, but not p65, NFκB in the nucleus of LPS-stimulated mouse RAW264.7 macrophages and human THP-1 monocytes. This activity of LY2 was mimicked by its PI3K-inert analog LY303511 (LY3), but not by another PI3K inhibitor - wortmannin. We further show that LY2 inhibited LPS-induced IL-10 expression by RAW264.7 macrophages, in a PI3K-independent mechanism. Moreover, using a deletion mutant of an IL-10 promoter reporter gene we demonstrate that the activity of the NFκB enhancer site at the IL-10 promoter is regulated by LY2 in a PI3K-independent manner. Finally, both LY2 and LY3 elevated TNFα production in the LPS tolerant state which is regulated by p50 NFκB homodimers, but not before tolerance development. The effects of LY2 and LY3 on p50 translocation and on cytokine production in LPS-stimulated macrophages are thus consistent with specific PI3K-independent inhibition of p50 NFκB homodimer activity by LY2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-223 Inhibits Lipid Deposition and Inflammation by Suppressing Toll-Like Receptor 4 Signaling in Macrophages

Atherosclerosis and its complications rank as the leading cause of death with the hallmarks of lipid deposition and inflammatory response. MicroRNAs (miRNAs) have recently garnered increasing interests in cardiovascular disease. In this study, we investigated the function of miR-223 and the underlying mechanism in atherosclerosis. In the atherosclerotic ApoE-/- mice models, an obvious increase ...

متن کامل

Cytokine-stimulated T cells induce macrophage IL-10 production dependent on phosphatidylinositol 3-kinase and p70S6K: implications for rheumatoid arthritis

IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with ...

متن کامل

Constitutively Activated Akt-1 Is Vital for the Survival of Human Monocyte-Differentiated Macrophages

Recent data from mice deficient for phosphatase and tensin homologue deleted from chromosome 10 or src homology 2 domain-containing 5' inositol phosphatase, phosphatases that negatively regulate the phosphatidylinositol 3-kinase (PI3K) pathway, revealed an increased number of macrophages in these animals, suggesting an essential role for the PI3K pathway for macro-phage survival. Here, we focus...

متن کامل

Caffeine induces endothelial tissue factor expression via phosphatidylinositol 3-kinase inhibition.

Tissue factor (TF) is the key activator of coagulation and is involved in acute coronary syndromes. Caffeine is often reported to increase cardiovascular risk; however, its effect on cardiovascular morbidity and mortality is controversial. Hence, this study was designed to investigate the impact of caffeine on endothelial TF expression in vitro. Caffeine concentration-dependently enhanced TF pr...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical pharmacology

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2012